©北京泰科博思科技有限公司   /   京ICP备09107432号-1   /   网站建设:中企动力 北京

解决方案

Solution

>
>
>
【MS应用实例】达索系统分享:包装用聚合物的有机硅研究
产品名称

【MS应用实例】达索系统分享:包装用聚合物的有机硅研究

所属分类
产品中心
联系我们
相关资料
方案详情
行业
材料
分类

包装覆盖产品,在存储、运输、分发和使用过程中保护产品。除了作为抵御冲击、温度变化和压力变化的物理外壳,它还可以作为抵御氧化剂的屏障。最后,它是一种信息和营销工具。

 

Packaging Development and New Trends

开发新包装的主要步骤包括:

I研究:选择材料(通常是聚合物薄膜)并进行设计;

 

II开发:在实验室(试点)规模上对材料的物理和化学性质、对环境的潜在影响、安全和监管问题进行表征和评估;

 

III制造:在质量控制指导下大规模生产。选择包装材料是一个漫长的过程。常用的材料有纸和纸板、塑料、金属和玻璃。

 

2019年,塑料占全球包装需求的近一半,约为44%1。如今塑料的产量已经超过了世界所能处理的总量,其中很大一部分是一次性使用的,在使用后的几分钟内就被处理到环境中,但在自然中保存了数百年。因此,随着这些材料的变化,可持续发展的理念应运而生,迫切需要创新的、可回收的、可再生的和可降解的组件。

 

考虑到新的消费者的需求,供应链的波动,以及将不可降解的塑料排放到环境中对生物的后果,必须尽快解决这一挑战。因此,模拟和建模似乎是迅速解决这一问题的有力工具,其好处包括加强新物质的发现,不仅减少实验室使用的资源,而且减少用于大量必要物理测试的时间。

 

BIOVIA as a Laboratory and Industry Solution Tool

BIOVIA Materials Studio (MS)是一款来自达索Systèmes的建模和仿真工具,它提供了一系列不同的模块来建模不同的材料,研究它们的特性,并分析它们的行为。模拟尺度通常从原子尺度到中尺度。原子模型提供了更详细的见解,因此它是研究分子结构、内能、化学键和角度等的一个很好的选择。而对于较大的系统则采用了细观结构(图1)。

 

MS Mesocite可以对细观结构进行建模和模拟,使研究具有多个组分的复杂构型成为可能。这种模型在时间和系统长度的原子尺度上具有挑战性。在原子尺度上,有必要考虑系统中所有原子之间的每一次相互作用;然而,在中尺度上(即粗粒度模型4),原子被分组在一起,这降低了自由度,系统只考虑组之间的相互作用,这大大降低了计算成本。

 

1 b,这种简化使大规模系统的模拟成为可能,如膜、软物质和生物聚合物。

 

Figure 1: (a) Molecular

 

Figure 1 (b)Coarse-Grained Representation of Dilinoleoylphosphatidylcholine (DLPC)

 

为了将真实的分子带到虚拟的环境中,我们实现了原子间势,通常称为力场,这是决定珠子如何相互作用的参数的组合。这些参数包括键项(分子内相互作用)和非键项(分子间相互作用)。为了确定和验证这些规范,进行了仿真,并将结果与实验结果进行了比较。

 

一旦参数与实验结果相一致,力场就准备好了,可以应用于其他类似化学系统的研究。

 

马提尼力场于2007年首次发表,其主要目的是模拟复杂的生物分子。2021年,马提尼3.0作为一个有前景的更新版本发布,现在广泛扩展到其他类型的化学品,如聚合物,结合了11个级别的参数,从超级吸引到超级排斥的非键相互作用。

 

Polymers as a Case Study

除聚乙烯外,聚丙烯是包装工业中需求量最大的聚合物。它是最简单的均聚物之一,其重复单元是丙烯(图2)。了解它的分子结构、力学和化学性质,以及它与其他分子的相互作用,不仅有助于以它为基础生产产品,而且有助于开发具有等效甚至增强性能的新材料。

Figure 2: Polypropylene from Macroscale to Nanoscale

 

Materials Studio中尺度模拟使用MS Mesocite,采用NVT和NPT集成,开发了一个基于Martini 3.0的定制力场,该力场将专门针对聚丙烯珠(图3)。我们研究了粗粒珠数量对旋转半径(Rg)和密度随温度变化的影响。将这些结果与实验数据进行比较,以验证新开发的力场(图4)。

Figure 3: Mesostructure containing chains of Coarse-Grained Polypropylene

 

接下来,我们研究了其他可以满足包装工业需求的常见属性,如水蒸气透过率(WVTR)和氧气透过率(OP)。这两者对于保存储存的货物以及断裂伸长率都是至关重要的,这可能与聚合物的生产或运输有关。

Figure 4: Results obtained in Materials Studio for Polypropylene: a) Radius of gyration, b) Density and c) Diffusion Coefficient of Water 

 

聚丙烯是一种不可生物降解的石油基聚合物,具有高氧扩散和低水蒸气渗透。市场的新趋势是寻找与旧聚合物具有同等或更大优势的生物基和生物降解聚合物。同样的分步计算方法应用于更简单的聚合物,现在被扩展到更复杂的框架,如聚乳酸(PLA)和聚乙二醇(PGA) BIOVIA材料工作室达索Systèmes提供了一个先进的环境,在二氧化硅材料及其性能的发现和分析。使用这种解决方案,过量的实验室实验被最小化,资源被保留,成本被降低,上市时间被改善,创新被迅速推向市场。

 

Sources:

Packaging covers products to protect them during storage, transportation, distribution, and use. In addition to being a physical enclosure against shocks, temperature changes, and pressure changes, it can also act as a barrier against oxidizing agents. Lastly, it serves as an information and marketing tool.

 

Packaging Development and New Trends

The main steps for developing new packaging include:

I. Research: choose the material (often a polymer film) and design it;

 

II.Development:characterize the materials and evaluate their physical and chemical properties, potential impact on the environment, the safety and the regulatory issues of the material on a laboratory (pilot) scale;

 

III. Manufacturing: produce it on a large scale following the guidance of Quality Control.

 

Choosing the material for packaging is a long process. Commonly used materials are paper and cardboard, plastics, metals and glass. Plastics corresponded to almost half of the worldwide packaging demand in 2019, counting approximately 44%1. The production of plastics nowadays is larger than the amount the world can deal with big part of it is single use, being disposed in the environment in a matter of minutes after usage, but staying in nature for hundreds of years. Consequently, the idea of sustainability emerges with the necessity for changes in these materials, urging for innovative, recyclable, renewable, and degradable components.

 

The answers to this challenge must come fast, considering the new consumers’ desires, the volatility of the supply chain, and the consequences to living beings for releasing non-degradable plastics into the environment2. Therefore, simulation and modeling appear as powerful tools to fight against this issue rapidly, including benefits such as enhancing the discovery of new substances, and reducing, not only resources used in the laboratory, but also the time applied in the numerous necessary physical tests.

 

BIOVIA as a Laboratory and Industry Solution Tool

BIOVIA Materials Studio® (MS) is a modelling and simulation tool from Dassault Systèmes that provides a list of diverse modules to model different materials, to study their properties, and analyze their behavior. Simulation scales typically go from the atomistic to the meso-scale. Atomistic models give more detailed insights, thus it is a good option to investigate the structure of molecules, internal energy, bonds and angles, for example. While mesostructures are employed for larger systems (Figure 1).

 

MS Mesocite can model and simulate mesostructures, making it possible to study complex configurations with many components. Such models would be challenging at the atomistic scale in terms of time and system length. In atomic scale, it is necessary to account for every interaction between all atoms in the system; however, at the mesoscale (i.e. coarse-grained models4), the atoms are grouped together, this reducing the degrees of freedom and the system accounts only the interaction between the groups, which greatly decreases the computational cost.

 

1b. This simplification enables simulations of large-scale systems such as membranes, soft matter, and biopolymers.

 

Figure 1: (a) Molecular

 

Figure 1 (b)Coarse-Grained Representation of Dilinoleoylphosphatidylcholine (DLPC)

 

To bring a real molecule to a virtual environment, we implement an Interatomic Potential, commonly called a Forcefield, which is a combination of parameters that will determine how the beads interact. These parameters consist of bonded terms (intramolecular interactions) and non-bonded terms (intermolecular interactions). In order to determine and validate these specifications, simulations are performed, and the results are compared with experimental results.

 

Once the parameters are validated against experimental results, the Forcefield is ready and can be applied in other studies with similar chemical systems.  

 

The Martini forcefield was first published in 2007, with the primary aim to simulate complex biomolecules5. In 2021, Martini 3.0 was published as a promising updated version, now broadly extended to other types of chemicals, such as polymers, combining parameters with 11 levels that go from hyper attractive to super repulsive non-bonded interactions6.

 

Polymers as a Case Study

After polyethylene, polypropylene is the most demanded polymer in the packaging industry7. It is one of the simplest homopolymers, and the repeat unit is propylene (Figure 2). Understanding its molecular structure, its mechanical and chemical properties, and its interactions with other molecules is pertinent not only to manufacture products based on it, but also to developing new materials with the equivalent or even enhanced properties.

Figure 2: Polypropylene from Macroscale to Nanoscale

 

Materials Studio Mesoscale Simulations were run using MS Mesocite, employing both NVT and NPT ensembles, to develop a tailored Forcefield based on Martini 3.0, which would be specific to polypropylene beads (Figure 3). We studied the influence of Coarse-Grained beads number on the radius of gyration (Rg) and the density variation with the temperature. These results were compared to experimental data in order to validate the newly developed Forcefield (Figure 4).

Figure 3: Mesostructure containing chains of Coarse-Grained Polypropylene

 

Next, we looked at other common properties that could meet the needs of the packaging industry such as the Water Vapor Transmission Rate (WVTR) and Oxygen Permeation (OP). Both of these are critical for preserving stored goods, as well as for elongation at break, which may be relevant to polymer production or transportation.

Figure 4: Results obtained in Materials Studio for Polypropylene: a) Radius of gyration, b) Density and c) Diffusion Coefficient of Water 

 

Polypropylene is a non-biodegradable petroleum-based polymer with a high oxygen diffusion and a low water vapor permeation. The new tendency of the market is to find biobased and biodegradable polymers with equivalent or superior advantages compared to the old ones. The same step-by-step computational method applied to simpler polymers is now being extended to more complex frameworks, such as Polylactic acid (PLA) and Polyglycolide (PGA) BIOVIA Materials Studio® Dassault Systèmes offers an advanced environment for discovery and analysis In Silico of materials and their performance.Using this solution, excessive laboratory experiments are minimized, resources are preserved, costs are reduced, time-to-market is improved, and innovations are brought quickly to market.

 

Sources:

1.Statista. Distribution of packaging demand worldwide in 2019, by material type. Available in.

<https://www.statista.com/statistics/271601/packaging-materials-in-the-global-packaging-market-since-2003/>

 

2.National Geographic. The world’s plastic pollution crisis explained.2019.Available in.

<https://www.nationalgeographic.com/environment/article/plastic-pollution>

 

3.BIOVIA Reference Database. Molecular Modeling and Simulation. Available in.

<https://www.3ds.com/products-services/biovia/references/>

 

4.Casalini, Tommaso. “Fundamentals and application of modeling in support of spinal cord injury repair strategies.” Spinal Cord Injury (SCI) Repair Strategies. Woodhead Publishing, 2020. 279-306.

 

5.Marrink, Siewert J., et al. “The MARTINI force field: coarse grained model for biomolecular simulations.” The journal of physical chemistry B 111.27 (2007): 7812-7824.

 

6.Souza, Paulo CT, et al. “Martini 3: a general purpose force field for coarse-grained molecular dynamics.” Nature methods 18.4 (2021): 382-388.

 

7.World Economic Forum. Setting the facts straight on plastics. Available in

 

文章详情:

本文翻译至达索BLOG,阅读原文。

https://blog.3ds.com/brands/biovia/in-silico-study-of-polymers-used-for-packaging-applications/

 

北京泰科博思科技有限公司是BIOVIA Materials Studio官方指定代理商,有关软件详情或者技术支持请咨询北京泰科。


电话:010-64951848

邮箱:sales@tech-box.com.cn


北京泰科为广大学习分子模拟科研人员提供了交流讨论平台,泰科建立了BIOVIA Pipeline Pilot和Materials Studio交流群,群里有专业老师解答问题,如有兴趣一起交流,欢迎来电/邮申请入群,作者期待您的参与!

 

北京泰科涉及行业

材料研发

基于BIOVIA Materials Studio材料设计平台,提供涉及电池、航空航天、国防军工、建筑、涂料涂层等多领域材料研发软件及综合解决方案

 

药物研发

针对药物设计、药物研发等提供基于Discovery Studio、COSMOLOGIC等软件的ADME、构象比对、溶剂筛选、结晶、成盐、共晶筛选、稳定性、溶解度pKa、分配系数等性质的模拟预测软件及方案

 

化工设计

面向精细化工、新能源、石油化工等领域提供精馏萃取催化剂设计、热力学性质(溶解度、粘度等)、提纯表面处理吸附等性质模拟软件平台及解决方案

 

数据挖掘

基于Pipeline Pilot提供数据搜集、数据清洗、特征工程、机器学习、流程设计等多种数据挖掘综合解决方案

 

一体化实验室

• 实验室信息管理

• 电子实验记录本/SOP执行

• 试剂耗材管理

• 仪器管理

• 数据管理

 

部分产品

量化材料类

• Crystal:固体化学和物理性质计算软件

• Diamond:晶体结构数据可视化分析

• Endeavour:强大的求解晶体结构的软件

• Molpro:高精度量化软件

• Molcas:多参考态量软件                   

• Turbomole:快速稳定量化软件

• TeraChem:GPU上运行的量化计算软件

• Spartan:分子计算建模软件

 

数据分析类

• GelComparll:凝胶电泳图谱分析软件

• SimaPro:生命周期评估软件             

• Unscrambler:完整多变量数据分析和实验设计软件      

• CSDS:剑桥晶体结构数据库

• lCDD:国际衍射数据中心数据库                

• ICSD:无机晶体结构数据库

• Pearson’s CD:晶体数据库

 

公司简介:

北京泰科博思科技有限公司(Beijing Tech-Box S&T Co. Ltd.)成立于2007年,是国内领先的分子模拟及虚拟仿真综合解决方案提供商。

 

北京泰科博思科技有限公司与国际领先的模拟软件厂商、开发团队深入合作,为高校、科研院所和企业在材料、化工、药物、生命科学、环境、人工智能及数据挖掘、虚拟仿真教学等领域提供专业的整体解决方案。用户根据需要在我们的平台上高效的进行各种模拟实验,指导实际的生产设计。

 

北京泰科博思科技有限公司拥有一支一流的技术服务团队和资深的专家咨询团队,以客户真正需求出发,服务客户,为客户创造价值。我们秉承“职业、敬业、担当、拼搏、合作”的企业精神,致力于用国际领先的软件产品和专业全面的技术支持服务,成为客户可信赖的合作伙伴。 

未找到相应参数组,请于后台属性模板中添加
暂未实现,敬请期待
暂未实现,敬请期待

更多解决方案

——

【MS应用实例】中石化/北化研究院成果展示:用分子模拟软件Mateials Stodio定量分析α-Al203和ɵ-Al203
【MS应用实例】中石化/北化研究院成果展示:用分子模拟软件Mateials Stodio定量分析α-Al203和ɵ-Al203
Materials Studio Pipeline Pilot
【COSMOlogic应用实例】马德里大学Cristian Moya教授:利用DFT/COSMO-RS预测CO2化学吸收等温线
【COSMOlogic应用实例】马德里大学Cristian Moya教授:利用DFT/COSMO-RS预测CO2化学吸收等温线
COSMOtherm Turbomole
【MS应用实例】福建石墨烯技术研究所Lu Bingan教授成果:高性能钾离子电池用双金属氧化物Sb2MoO6/rGO阳极的性质
【MS应用实例】福建石墨烯技术研究所Lu Bingan教授成果:高性能钾离子电池用双金属氧化物Sb2MoO6/rGO阳极的性质
BIOVIA Materials Studio BIOVIA Pipeline Pilot
【COSMOlogic应用实例】华东理工大学成果展示:基于COSMO-RS模型研究基团修饰的离子液体对乙腈-水汽液平衡的影响
【COSMOlogic应用实例】华东理工大学成果展示:基于COSMO-RS模型研究基团修饰的离子液体对乙腈-水汽液平衡的影响
COSMOtherm Turbomole
【COSMOlogic应用实例】华东理工大学漆志文教授成果展示:水对离子液体萃取燃料油脱硫的影响:COSMO-RS和实验研究
【COSMOlogic应用实例】华东理工大学漆志文教授成果展示:水对离子液体萃取燃料油脱硫的影响:COSMO-RS和实验研究
COSMOtherm
【Turbomole应用实例】中国人大赖文珍老师成果展示:钴取代同型儿茶酸酯的反应机理2,3-双加氧酶:QM/MM研究
【Turbomole应用实例】中国人大赖文珍老师成果展示:钴取代同型儿茶酸酯的反应机理2,3-双加氧酶:QM/MM研究
Turbomole